
	 1	

Elliott	903	Software	
	
Andrew	Herbert	
2nd	February	2013	
	
Background	
	
In	September	2011,	I	became	the	owner	of	an	Elliott	903	computer.		Originally	
delivered	by	Elliotts	to	AERE	around	1967,	the	machine	was	purchased	by	Don	
Hunter	in	1978	and	used	by	him	as	a	home	computer	for	many	years.		Now	
advanced	in	years,	Don	no	longer	wanted	to	the	machine	in	his	home,	so	aided	by	
Terry	Froggatt,	I	moved	it	to	my	house	in	Cambridge.		As	well	as	the	computer	
Don	handed	over	several	boxes	of	paper	tapes	and	manuals.		After	re-
commissioning	the	machine	with	Terry’s	help	I	set	myself	the	task	of	archiving	
and	cataloguing	the	paper	tapes	and	documentation,	with	the	aim	of	establishing	
master	copies	of	what	a	903	user	would	expect	to	have	in	the	early	1970s	just	
before	Elliotts	ceased	providing	support	and	the	machines	became	obsolescent.	
	
The	Elliott	903	
	
The	Elliott	903	computer	is	described	in	some	detail	on	the	“Our	Computer	
Heritage”	web	site.		In	summary,	it	is	an	18-bit	minicomputer	with	a	minimum	of	
8K	of	core	store.		The	903	was	a	civilian	packaging	of	the	military	Elliott	920B	
computer.		Designed	in	the	early	1960s,	it	was	a	discrete	transistor	machine	with	
a	typical	instruction	time	of	around	25	microseconds.		It	was	a	popular	teaching	
machine	in	universities	and	colleges	where	the	16K	configuration	was	commonly	
deployed	to	allow	load-and-go	operation	of	ALGOL	60	and	FORTRAN.		Some	
industrial	users	further	extended	the	memory	to	24K	and	beyond	to	run	
programs	on	large	data	sets.			
	
The	order	code	is	very	simple	with	16	basic	instructions	operating	on	fixed-point	
fractions:	floating-point	arithmetic	has	to	be	performed	by	software.			
	
The	primary	means	of	input/output	is	8-hole	paper	tape.	While	nominally	an	
optional	peripheral,	most	903s	came	with	an	attached	ASR33	teletype.		Graph	
plotters,	magnetic	tape	drives,	line	printers	and	card	readers	were	also	available	
(identical	to	those	supplied	with	the	Elliott	4100	series).		Physically	the	basic	
machine	resembled	a	modern	chest	freezer.		Further	cabinets	could	be	added	to	
hold	additional	core	store,	up	to	a	maximum	of	64K,	and/or	additional	
peripheral	interfaces,	along	with	additional	power	supplies.		There	was	an	
operator’s	control	panel	that	stood	on	top	of	the	cabinet	together	with	paper	
tape	reader	and	punch.		Many	installations	also	had	an	engineer’s	diagnostic	
panel	with	neon	displays	of	the	principal	registers	etc.			
	
While	there	were	interrupts	to	allow	multi-programming	and	asynchronous	
input-output,	there	was	no	virtual	memory	provision	so	most	903	computers	
were	used	as	single	user	machines.	
	
When	new,	in	the	late	1960s,	a	typical	system	would	cost	around	£25,000.	



	 2	

	
Elliott	903	Software	
	
Elliotts	supplied	software	to	users	bundled	in	with	the	purchase	and	on-going	
maintenance	support	for	the	computer	itself:	in	those	days	software	was	seen	by	
manufacturers	as	a	cost	of	doing	business	rather	than	a	source	of	revenue.		The	
standard	suite	consisted	of:	

1. Programming	language	systems	(ALGOL	60,	FORTRAN	II	and	SIR	
assembler)	

2. Subroutine	libraries	
3. Development	utilities	(e.g.,	editors,	debugging	aids)	
4. Applications	
5. Test	programs.	

Notably	this	list	does	not	include	an	operating	system.		Most	users	ran	programs	
on	the	bare	machine	and	the	programming	language	systems	were	self-
contained.		There	was	a	9	KHz	magnetic	tape	based	batch	operating	system	
called	FAS	which	I	encountered	as	a	schoolboy,	sending	FORTRAN	programs	to	
be	run	on	Elliott	903	at	the	now	defunct	Medway	and	Maidstone	College	of	
Technology	in	Rochester,	Kent.		There	was	also	a	disc	operating	system	called	
RADOS	for	the	Elliott	905	computer,	a	faster	and	upwards	compatible	successor	
to	the	903,	but	that	is	outside	the	scope	of	this	article.	
	
Elliotts	distributed	software	on	paper	tape.	Programming	systems,	utilities	and	
applications	were	shipped	as	“sum	checked	binary”	tapes	suitable	for	loading	
using	the	903’s	initial	instructions.		Libraries	were	supplied	either	as	source	code	
or	an	intermediate	“relocatable	binary	code	(RLB)”	suitable	for	linking	with	
compiled	programs.			
	
Elliotts	settled	on	using	the	emergent	ASCII	code	for	source	tapes,	for	
compatibility	with	the	4100	series,	moving	away	from	the	earlier	private	code	
used	on	their	503	computers.		Unfortunately	ASCII	changed	somewhat	during	
the	life	of	the	903	with	some	symbols	unhelpfully	swapping	positions	in	the	code	
table.		Most	903	software	essentially	ignored	this	–	a	later	“900	telecode”	was	
introduced	in	place	of	the	original	“903	telecode”	but	in	reality	all	that	happened	
was	an	update	to	the	documentation	to	reflect	the	new	graphics	associated	with	
the	binary	codes	used	in	the	software.		This	was	particularly	tiresome	for	ALGOL	
60	users	where	string	quotes	changed	from	acute	and	grave	accents	(‘a	pretty	
string’)	to	quote	and	at	sign	('an	ugly	string@),	and	as	with	many	other	
contemporary	British	machines,	£,	#	and	$	played	musical	chairs.	
	
Programming	languages	
	
Elliotts	provided	three	programming	language	systems	for	the	903:	ALGOL	60,	
FORTRAN	II	and	SIR	(Symbolic	Input	Routine	–	i.e.,	an	assembler).	
	
ALGOL	and	FORTRAN	were	both	provided	as	either	a	two-pass	system	for	use	on	
8K	machines,	or	as	an	integrated	“load	and	go”	system	for	16K	machines.		In	the	
two	pass	systems	an	intermediate	tape	was	produced	for	communication	
between	the	separate	passes.			



	 3	

	
In	the	case	of	ALGOL,	the	first	pass	was	the	compiler	(called	the	“translator”	by	
Elliotts)	that	produced	an	intermediate	stack-based	code	rather	than	relocatable	
binary	machine	code	(although	the	same	tape	format	was	used	for	both	so	that	
the	standard	903	loader	could	be	used	to	put	the	bits	into	store.	The	second	pass	
run	time	system	comprised	the	interpreter	for	the	intermediate	code	and	
standard	libraries.			
	
In	the	case	of	FORTRAN,	the	compiler	produced	either	SIR	code	or	RLB	code	and	
therefore	the	runtime	was	basically	just	the	standard	loader	and	a	set	of	
libraries.			
	
In	both	systems	the	user	could	reclaim	the	memory	allocated	to	the	standard	
library	by	scanning	a	“library	tape”	containing	RLB	and	only	those	routines	
needed	by	the	program	would	be	loaded.	
	
Both	systems	also	provided	a	“large	program”	second	pass,	essentially	the	
standard	second	pass	modified	to	allow	programs	and	data	to	extend	beyond	the	
8K	limit	of	the	basic	system.			
	
The	ALGOL	system	was	developed	by	CAP	and	based	on	the	Whetstone	ALGOL	
system	for	the	KDF9	developed	by	Randall	and	Russell,	written	up	by	them	in	
their	book	“ALGOL	60	Implementation”	published	by	Academic	Press	in	1964.		
Indeed	having	found	some	source	tapes,	I	discovered	that	the	903	ALGOL	system	
is	essentially	a	SIR	transcription	of	the	flow	charts	in	that	book.		903	ALGOL	has	a	
few	restrictions	compared	to	its	parent:	recursion	and	own	variables	are	
disallowed	and	all	identifiers	have	to	be	declared	before	they	can	be	used.		More	
usefully,	the	language	supports	“PRINT”	and	“READ”	statements	as	found	in	803	
and	503	ALGOL	which	are	convenient	to	use	and	allow	good	control	of	output	
formatting.	
	
The	restriction	on	recursion	is	easily	circumvented	with	a	patch	to	remove	the	
check	for	it	in	the	translator.		Everything	is	fine	at	run	time	provided	the	
recursive	procedure	does	not	have	local	variables	–	since	these	are	statically	
allocated	(i.e.,	making	them	own	variables….).		A	programmer	can	achieve	the	
effect	of	dynamic	local	variables	by	nesting	a	local	procedure	within	the	
recursive	one.		Don	Hunter	developed	such	a	patch	and	several	others	to	add	
further	extensions	that	are	embodied	in	his	ALGOL	system	for	the	Elliott	903	
simulator	to	be	found	on	the	CCS	simulator	archive.		I’ve	subsequently	reverse	
engineered	a	paper	tape	version	from	this,	added	further	patches	due	to	Terry	
Froggatt	that	deal	with	the	character	code	issue,	resulting	in	the	first	new	release	
of	Elliott	ALGOL	60	in	nearly	30	years!	
	
The	FORTRAN	II	system	is	little	more	than	a	macro-generator:	FORTRAN	
statements	are	translated	line-by-line	into	machine	code	with	no	optimization.		
While	generating	machine	code	might	be	thought	to	lead	to	faster	programs	
when	compared	to	ALGOL,	the	fact	that	both	have	to	implement	floating-point	
arithmetic	using	an	interpreter	erodes	any	difference.		Moreover,	when	



	 4	

debugging,	ALGOL’s	stricter	checking	of	integer	arithmetic	for	overflow	can	be	
an	advantage.	
	
Both	ALGOL	and	FORTRAN	provided	facilities	for	writing	procedures	in	machine	
code.		In	the	case	of	ALGOL,	and	optionally	for	FORTRAN,	these	have	to	be	
independently	compiled	and	linked.	FORTRAN	also	allows	SIR	assembly	code	to	
be	included	in-line.		In	both	cases	there	are	strict	rules	defining	how	machine	
code	should	be	written	to	conform	to	the	runtime	conventions	of	the	
corresponding	language	system.			
	
It	was	not	possible	to	separately	compile	and	link	ALGOL	procedures,	using	
Elliott’s	software.	In	part	this	was	because	the	output	of	the	ALGOL	translator	
was	intermediate	code	for	the	runtime	interpreter	rather	than	machine	code.	
However	Don	Hunter	subsequently	provided	a	means	to	compile	ALGOL	
procedures	independently	for	the	Elliott	903	simulator	and	in	principle	his	
system	could	be	run	on	a	real	903.			
	
The	main	assembler	provided	by	Elliotts	was	called	SIR	(for	Symbolic	Input	
Routine),	itself	was	the	successor	to	an	earlier	more	primitive	assembler	called	
T2	that	had	been	developed	for	the	first	machines	in	the	900	series	(i.e.,	the	
920A).			
	
SIR	allows	the	use	of	integer,	fractional,	octal	and	alphanumeric	constants,	
symbolic	labels,	literals,	relative	addressing	and	comments	as	its	main	features.		
It	does	not	provide	any	form	of	macro	generation	facility	and	has	limited	ability	
to	do	arithmetic	on	labels	as	addresses.	Instruction	function	codes	are	expressed	
numerically	rather	than	mnemonically.			
	
T2	by	contrast	only	accepts	instructions	with	simple	relative	addressing	and	
integer	constants.		While	essentially	obsolete	at	the	time	of	the	903,	T2	was	given	
to	users	as	a	number	of	utilities	were	written	in	T2	or	required	data	laid	out	as	if	
a	T2	program	block.		Many	library	routines	were	also	supplied	in	T2	notation.	By	
design	SIR	was	made	upwards	compatible	with	T2	so	these	could	be	assembled	
in	both	systems.	
	
SIR	could	be	operated	in	either	load-and-go	mode	or	made	to	produce	RLB	tapes	
preceded	by	standard	RLB	loader.		Load-and-go	mode	was	convenient	for	small	
programs,	but	if	the	space	occupied	by	the	assembler	was	needed,	or	a	self-
contained	binary	tape	for	loading	under	initial	instructions	was	required	the	RLB	
option	was	preferable.		There	is	no	support	in	SIR	for	program	code	to	be	located	
outside	the	first	8K	of	memory,	which	was	to	become	an	issue	later	in	the	history	
of	the	900	series	as	16K	and	larger	memories	became	prevalent.		(The	work	
around	used	to	assemble	the	16K	load-and-go	systems	was	to	build	them	in	the	
bottom	8K,	then	run	a	utility	program	to	copy	them	to	the	upper	8K.		As	the	
machine	code	is	based	on	8K	relative	addressing	there	was	no	need	to	fix	up	
addresses,	except	for	references	between	the	two	8K	modules).	
	
Library	routines	
	



	 5	

The	library	routines	provided	by	Elliotts	were	principally	input-output	and	
mathematical	functions.		A	double	precision	interpreter	(QDLA)	and	a	floating-
point	interpreter	(QF)	were	provided	along	with	mathematical	functions	for	
these	formats.		In	the	case	of	ALGOL	and	FORTRAN	versions	of	these	packages	
were	built	into	the	language	systems:	the	standalone	library	versions	were	
intended	for	SIR	programmers	to	use.			
	
For	ALGOL	programmers	there	was	a	source	code	matrix	library	called	ALMAT.		
This	package	originated	on	the	803/503	computers	and	provided	routines	for	
matrix	operations	and	linear	algebra	functions.		
	
For	machines	with	graph	plotters,	line	printers	and	card	readers	there	were	
appropriate	library	routines	(device	drivers	in	modern	terms)	for	the	SIR	
programmer.		ALGOL	had	its	own	plotter	library	(based	on	the	library	for	the	
Elliott	4100	series).		Both	ALGOL	and	FORTRAN	integrated	card	reading	and	line	
printing	into	their	higher-level	input-output	facilities.	
	
The	library	routines	were	all	known	by	short	identifiers	beginning	with	the	letter	
Q	(e.g.,	QSQRT,	and	strictly	"Q	not	followed	by	U"):	those	which	had	been	
inherited	from	the	early	900	series	software	were	often	also	known	by	shorter	
code	names	such	as	“B1”	(QLN),	reminiscent	of	the	EDSAC	convention	for	naming	
library	tapes.			
	
The	only	data	processing	oriented	routine	was	a	Shellsort	package	for	in-
memory	“files”,	and	the	interface	to	this	was	very	basic	–	essentially	a	table	
defining	record	structure	and	the	order	in	which	fields	were	to	be	sorted.		There	
was	no	explicit	support	for	fields	that	spanned	multiple	words	or	had	complex	
structure	(e.g.,	floating	point	numbers)	although	a	programmer	who	understood	
the	machine	representation	of	the	data	could	work	around	this.	
	
Utility	Programs	
	
The	utility	programs	provided	by	Elliotts	were	mostly	concerned	with	paper	
tape	preparation.		EDIT	was	a	simple	text	editor,	reading	in	a	steering	tape	of	
editing	commands	to	be	applied	to	a	source	tape	and	an	updated	version	
punched.		It	has	commands	for	copying	or	deleting	to	an	identified	string,	making	
replacements	and	inserting	new	text.		Two	tape	copy	programs	were	provided:	
COPYTAPE	for	short	tapes	and	QCOPY	for	long	tapes.		The	former	read	the	entire	
tape	into	store	before	punching	a	copy,	which	was	kinder	on	the	tape	reader	than	
QCOPY,	which	operated	character	by	character,	forcing	the	reader	to	continually	
brake	the	input	tape	as	it	waited	for	the	punch.		Given	the	potential	unreliability	
of	paper	tape	as	a	medium	all	these	routines	provided	a	means	to	rescan	the	
input	and	read	back	the	output	to	ensure	misreads	and/or	mispunches	were	
detected.		(And	as	Terry	Froggatt	points	out,	the	truly	paranoid	read	back	the	
input	again	after	punching	to	confirm	the	absence	of	store	corruption...)	
	
Debugging	aids	comprised	two	utilities:	MONITOR	and	QCHECK.		Both	had	to	be	
assembled	as	part	of	the	system	being	debugged.		As	the	name	suggests,	
MONITOR	provided	facilities	to	monitor	the	execution	of	a	program	by	printing	



	 6	

out	registers	and	memory	etc.	whenever	the	program	executed	one	of	a	specified	
set	of	program	locations.		QCHECK	provided	an	interactive	debugging	interface	
enabling	memory	to	be	inspected	and	modified	and	for	further	program	
execution	to	be	triggered.		QCHECK	itself	could	be	triggered	by	an	interrupt	from	
the	operator's	console.		Both	operated	at	the	machine	code	level	and	were	of	
little	use	to	ALGOL	and	FORTRAN	programmers.	
	
A	separate	group	of	utilities	provided	a	set	of	tools	to	allow	the	programmer	to	
build	binary	tapes	that	would	load	under	initial	instructions	(i.e.,	not	requiring	
the		relocatable	binary	loader).		
	
QBINOUT	was	used	to	punch	out	short	binary	programs	to	paper	tape,	in	a	form	
suitable	for	loading	by	the	initial	instructions.	Typically	the	punched	program	
would	itself	be	a	more	powerful	loader,	of	which	there	were	several.		T22/23	
provided	just	a	loader	(the	T22	part)	and	the	means	to	dump	regions	of	store	out	
in	T22	format	(the	T23	part).		The	paper	tape	format	was	more	compact	that	that	
produced	by	QBINOUT	and	included	checksums	to	guard	against	errors.		A	
further	utility	C4	was	provided	to	check	the	contents	of	a	punched	T22/23	a	tape	
against	store.		(interestingly	some	internal	documentation	refers	to	T22	as	
QSCBIN	and	T23	as	QSCBOUT	but	these	names	didn't	make	it	to	the	903	user	
documentation.)		A	more	advanced	loader	was	that	used	by	the	three	language	
systems	to	link	and	load	separately	compiled	libraries	and	programs	help	in	RLB	
form.	
	
Applications	
	
There	were	just	two	applications	provided	by	Elliotts	–	the	Elliott	Simulation	
Package	(ESP)	and	a	PERT	project	planning	system.	
	
ESP	consisted	of	a	machine	code	library	and	accompanying	ALGOL	source	code	
routines	for	generating	random	numbers	drawn	from	different	distributions,	
histogramming	and	setting	up	event	based	simulations.		The	user	was	expected	
to	write	their	simulation	using	the	supplied	source	code	as	a	foundation,	compile	
the	result	and	link	with	the	small	machine	code	library	that	contained	a	random	
number	generator.	
	
The	PERT	application	was	standalone,	reading	a	steering	tape	to	set	the	system	
up	then	a	series	of	data	tapes	describing	individual	projects	to	be	analysed.		The	
application	would	then	print	tables	of	shortest	paths,	earliest	and	latest	deadline	
and	so	forth.	
	
Test	programs	
	
Elliotts	offered	a	large	collection	of	test	programs	for	the	903.		Most	were	
intended	for	use	for	fault-finding	by	engineers,	but	a	few	were	supplied	to	users	
for	use	at	start	of	day	to	check	the	condition	of	the	machine	and	paper	tape	
system.		All	the	test	tapes	were	named	Xn,	as	in	‘X3’	the	processor	function	test.		
	
Other	Software	



	 7	

	
The	advent	of	the	Elliott	905	brought	a	new	version	of	SIR	called	MASIR	which	
included	macro	generation	facilities	and	new	symbolic	address	formats	to	better	
enable	programming	across	8K	memory	module	boundaries	as	16K	and	larger	
memory	configurations	became	the	norm.		Instruction	mnemonics	were	
introduced	to	cover	the	fact	that	the	additional	instructions	in	the	905	repertoire	
were	all	coded	as	function	code	15.		MASIR	came	with	a	new	linking	loader	
(called	“900	LOADER”)	with	a	new	RLB	format.		Both	MASIR	and	the	900	
LOADER	were	issued	to	903	users.	
	
A	new	FORTRAN	IV	system	was	provided	for	the	905.		This	provided	a	full	
implementation	of	the	ASA	standard	and	generated	RLB	suitable	for	the	new	900	
LOADER.		While	905	FORTRAN	runs	in	the	903	it	would	appear	it	was	not	
supplied	to	owners	of	the	older	machines.	
	
With	the	advent	of	the	905	it	became	more	common	for	there	to	be	an	operating	
system	and	the	final	releases	of	a	number	of	the	Elliott	systems	moved	to	a	
command	line	based	user	interface	in	place	of	using	the	machine	control	panel	to	
jump	to	program	entry	points.		(And	while	outside	my	own	experience	I	would	
presume	this	facilitated	integration	with	operating	systems	like	RADOS).	
	
There	were	other	sources	of	software	for	the	903	beyond	Elliotts:		there	was	an	
active	user	group	and	members	often	made	their	software	available	to	one	
another.			Other	languages	such	as	BASIC	and	ML/1	became	available	through	
this	route.	Elliotts	also	had	a	CORAL	system	but	it	was	not	issued	to	903	or	905	
users.	
	
Within	Elliotts,	other	divisions	at	Borehamwood,	Rochester	and	elsewhere	
developed	their	own	variants	of	the	standard	software	more	appropriate	to	
embedded	use	on	920B	and	920M	machines,	and	whose	development	systems	
often	lacked	an	online	teleprinter.		Examples	include	more	a	powerful	editor	
(BOWDLER)	and	a	two-pass	SIR	system	that	directly	punches	sum	checked	
binary	tapes	suitable	for	loading	under	initial	instructions.		Many	of	these	
utilities	continued	to	support	the	older	920	telecode	as	well	as	the	903	and	900	
telecodes,	including	provision	inputting	in	one	and	outputting	in	another.		But	
this	is	a	story	for	Terry	Froggatt	to	tell	as	an	Elliott	insider.	
	
Software	Issues	and	Quality	
	
Elliotts	labelled	successive	versions	of	each	piece	of	software	and	documentation	
pages	with	“Issue”	numbers.		These	were	incremented	with	each	release	but	in	a	
few	cases	there	were	minor	releases	with	numbers	like	“Issue	4C”.		Most	tapes	
were	punched	with	a	legible	header	giving	the	name	of	the	tape	and	its	issue	
number,	although	this	was	not	done	consistently	and	so	some	tapes	lack	headers,	
some	have	dates	rather	than	issue	numbers	and	some	just	have	written	or	
stamped	legends.		Surprisingly,	it	was	rare	for	the	issue	number	to	be	included	as	
a	comment	in	source	code	or	printed	as	a	diagnostic	when	running	binary	tapes.	
	



	 8	

Users	were	expected	to	update	the	manuals	with	re-issued	pages	and	to	replace	
obsolete	versions	of	software.	Interestingly	the	software	and	manuals	I	obtained	
from	Don	Hunter	seem	to	relate	to	a	second	8K	system	he	acquired	from	the	
British	Ceramics	Research	Association	and	it	would	appear	this	organization	did	
a	reasonable	job	of	updating,	although	tiresomely	Elliotts	did	not	provide	an	
updated	index	and	catalogue	against	which	users	could	check	their	holdings.		
The	only	way	this	can	be	done	is	to	track	through	the	“release	notes”	and	other	
bulletins	sent	out	by	Elliotts.		These	are	missing	from	Don’s	collection,	but	
fortunately	Richard	Burwood	has	an	almost	complete	set	and	has	summarized	
the	history	of	all	the	Elliott	issued	software	in	a	helpful	dossier.		Terry	Froggatt	
also	has	many	of	these	notes,	so	with	both	their	help	I’ve	been	able	to	identify	the	
last	known	releases	for	every	item	and	ensure	I	have	a	“current”	copy	of	both	
software	and	documentation.	
	
As	I’ve	worked	through	all	the	software	and	documentation	checking	one	against	
the	other,	mostly	using	my	own	903	simulator	as	this	offers	a	faster	development	
cycle	than	paper	tape	on	the	physical	machine,	I’ve	uncovered	a	surprising	
number	of	quality	issues	beyond	the	cavalier	approach	to	tape	labelling.		Many	of	
the	examples	in	the	documentation	either	contain	significant	errors	and	don’t	
run,	or	don’t	produce	the	stated	results.		In	part	this	is	inevitable	when	
documentation	was	prepared	from	a	handwritten	script	by	a	typist,	but	some	
errors	indicate	nobody	had	ever	checked	out	the	examples.		A	case	in	point	is	
QOUT1,	a	library	routine	for	printing	numbers,	where	the	sample	code	produces	
different	results	due	to	rounding	errors	than	what	is	documented.		Some	of	the	
later	issues	of	the	SIR	mathematical	routine	sources	contain	simple	syntactic	
errors,	easily	corrected,	but	again	showing	a	lack	of	attention	to	detail.		It’s	also	
evident	from	the	sources	that	there	was	no	common	coding	standard	used	by	
Elliott	software	developers,	leading	to	irritating	inconsistencies	between	how	
the	same	thing	is	done	in	different	sub-systems.	
	
Summary	
	
The	Elliott	903	came	with	three	major	programming	systems:	ALGOL,	FORTRAN	
and	SIR,	together	with	associated	utilities	for	software	development	using	paper	
tape	and	mathematical	libraries	for	engineering	and	scientific	problems.		There	
was	little	in	the	way	of	data	processing	facilities.	
	
While	one	can	quibble	about	some	quality	issues	with	how	it	was	documented	
and	distributed,	the	software	generally	did	what	was	expected	of	it	and	made	the	
machine	a	good	system	for	teaching	use	and	for	use	in	scientific	and	engineering	
applications.		
	
Postscript	
	
As	a	side	effect	of	exploring	Elliott	software	the	author	has	written	his	own	
simulator	in	F#,	a	recently	launched	Functional	Programming	language	
developed	by	Microsoft	Research,	Cambridge.		This	simulator	is	based	on	the	
Froggatt/Hunter	simulator	(which	was	written	in	Ada)	extended	with	a	full	
implementation	of	the	“undefined”	effects	of	each	model	in	the	900	range,	



	 9	

interrupt	handling,	asynchronous	input-output	and	an	extensive	range	of	
commands	for	unpicking	various	paper	tape	formats,	debugging	and	tracing	etc.		
It	has	only	been	run	on	Windows	7	and	is	still	a	work	in	progress.		Readers	are	
welcome	to	request	a	copy.		Included	in	the	simulator	are	files	containing	all	the	
Elliott	issued	software,	demonstration	scripts	to	illustrate	their	use	and	a	manual	
documenting	both	the	simulator	and	the	Elliott	software.	


